Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jiyong Yao and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail:
ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{S}-\mathrm{P})=0.002 \AA$
R factor $=0.020$
$w R$ factor $=0.049$
Data-to-parameter ratio $=27.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

RbPbPS_{4}

Rubidium lead phosphorus tetrasulfide, RbPbPS_{4}, possesses the $\mathrm{CsSmGeS}_{4}$ structure type, crystallizing in space group $P 2_{1} 2_{1} 2_{1}$ of the orthorhombic system. The structure consists of two-dimensional $\left[\mathrm{PbPS}_{4}\right]$ layers built from PbS_{7} monocapped trigonal prisms and PS_{4} tetrahedra. The layers are separated by Rb atoms.

Comment

In an effort to expand the range of $A \mathrm{Bi}_{\mathrm{MS}}^{4}$ ($A=\mathrm{Rb}$ and Cs , and $M=\mathrm{Si}$ and Ge; Yao et al., 2002) compounds by substitution chemistry, the new compound RbPbPS_{4} was obtained by the simultaneous substitution of Pb^{2+} for Bi^{3+} and P^{5+} for M^{4+}. The compound crystallizes in the non-centrosymmetric space group $P 2_{1} 2_{1} 2_{1}$ and is isostructural with $\mathrm{CsSmGeS}_{4}$ (Bucher \& Hwu, 1994), which was refined with a different cell setting. The two unit cells become similar by cyclic permutation of the axes of the latter $\left[a_{\text {old }}=b_{\text {new }} ; b_{\text {old }}=c_{\text {new }} ; c_{\text {old }}=a_{\text {new }}\right]$.

The structure of RbPbPS_{4} (Fig. 1) consists of two-dimensional $\left[\mathrm{PbPS}_{4}\right]$ layers separated by Rb atoms. Each Rb atom is coordinated by a distorted bicapped trigonal prism of eight S atoms. The $\mathrm{Rb}-\mathrm{S}$ bond lengths range from 3.368 (2) to 3.789 (1) \AA, comparable with those of 3.323 (1)-3.577 (1) \AA in $\mathrm{RbBiSiS}_{4}$ (Yao et al., 2002). Each P atom is coordinated by a tetrahedron of four S atoms. The $\mathrm{P}-\mathrm{S}$ bond lengths range from 2.032 (2) to 2.064 (2) \AA, consistent with those of 2.004 (2)-2.056 (2) \AA in ScPS_{4} (Lee \& Hilt, 1992). Each Pb atom is coordinated by a monocapped trigonal prism of seven S atoms. The $\mathrm{Pb}-\mathrm{S}$ distances range from 2.920 (1) to 3.282 (2) Å, comparable with those of 3.066 (3) -3.188 (3) \AA in $\mathrm{Li}_{2} \mathrm{PbGeS}_{4}$ (Aitken et al., 2001). The largest difference in $\mathrm{Pb}-$ S bond lengths within the PbS_{7} polyhedron is 0.362 (2) \AA. The

Figure 1
The structure of RbPbPS_{4}, viewed down [010].

Received 8 July 2004
Accepted 28 July 2004 Online 7 August 2004

Figure 2
The structure of the two-dimensional $\left[\mathrm{PbPS}_{4}\right]$ layer in RbPbPS 4 .
structure of the two-dimensional $\left[\mathrm{PbPS}_{4}\right]$ layer is shown in Fig. 2. The neighboring PbS_{7} polyhedra share opposite edges of the rectangular planes of the prisms to form zigzag chains along the b direction. Two parallel polyhedral chains are connected by the sharing of opposite edges of the PS_{4} tetrahedra. Each PS_{4} tetrahedron is arranged in such a way that one of the S atoms becomes the cap of an adjacent PbS_{7} polyhedron. The two $\left[\mathrm{PbPS}_{4}\right]$ slabs in the unit cell of RbPbPS_{4} are related by a 2_{1} screw axis along a.

Experimental

Yellow plates of RbPbPS_{4} were obtained from a solid-state reaction of $\mathrm{Rb}_{2} \mathrm{~S}_{3}(0.5 \mathrm{mmol}), \mathrm{Pb}$ (Alfa, $\left.99.5 \%, 1.0 \mathrm{mmol}\right), \mathrm{P}_{2} \mathrm{~S}_{5}$ (Aldrich, $99.5 \%, 0.5 \mathrm{mmol}$), and S (Aldrich, $99.5 \%, 1.0 \mathrm{mmol}$). The reactive flux $\mathrm{Rb}_{2} \mathrm{~S}_{3}$ (Sunshine et al., 1987) was prepared by the stoichiometric reaction of Rb (Aldrich, $98+\%$) and S in liquid NH_{3}. The reactants were loaded into a fused-silica tube under an Ar atmosphere in a glove box. The tube was sealed under a 10^{-4} Torr atmosphere (1 Torr $=133.322 \mathrm{~Pa})$ and then placed in a computer-controlled furnace. The sample was heated to 1073 K over a period of 20 h , kept at 1073 K for 84 h , cooled at $6 \mathrm{~K} \mathrm{~h}^{-1}$ to 373 K and then cooled rapidly to room temperature.

Crystal data

RbPbPS_{4}
$M_{r}=451.87$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.3987$ (7) Å
$b=6.6899$ (7) \AA
$c=17.2975(19) \AA$
$V=740.45(14) \AA^{3}$
$Z=4$
$D_{x}=4.053 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART 1000 CCD diffractometer
ω scans
Absorption correction: numerical face indexed (SHELXTL; Sheldrick, 2003)
$T_{\text {min }}=0.047, T_{\text {max }}=0.603$
8784 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 7200 reflections
$\theta=2.4-28.8^{\circ}$
$\mu=30.54 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Plate, yellow
$0.18 \times 0.16 \times 0.016 \mathrm{~mm}$

1807 independent reflections
1759 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=28.8^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-23 \rightarrow 23$

Figure 3
The asymmetric unit of RbPbPS_{4}, showing displacement ellipsoids at the 90\% probability level.

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }=0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.049$
$\Delta \rho_{\text {max }}=2.11 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.049$
$\Delta \rho_{\text {min }}=-1.57 \mathrm{e}^{-3}$
1807 reflections
Absolute structure: Flack (1983),
704 Friedel pairs
Flack parameter $=0.550(7)$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.02 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Rb}-\mathrm{S} 1$	$3.3680(15)$	$\mathrm{Pb}-\mathrm{S} 2$	$2.9945(16)$
$\mathrm{Rb}-\mathrm{S} 2^{\mathrm{i}}$	$3.4075(17)$	$\mathrm{Pb}-\mathrm{S} 3$	$3.0430(16)$
$\mathrm{Rb}-\mathrm{S} 4^{\text {ii }}$	$3.4345(16)$	$\mathrm{Pb}-\mathrm{S} 1$	$3.0900(14)$
$\mathrm{Rb}-\mathrm{S} 4$	$3.4412(16)$	$\mathrm{Pb}-\mathrm{S} 3^{\text {vii }}$	$3.1116(16)$
$\mathrm{Rb}-\mathrm{S} 3^{\text {iii }}$	$3.4639(17)$	$\mathrm{Pb}-\mathrm{S} 2^{\text {vii }}$	$3.2823(16)$
$\mathrm{Rb}-\mathrm{S} 2^{\text {iv }}$	$3.4734(17)$	$\mathrm{P}-\mathrm{S} 4^{\text {iv }}$	$2.0320(18)$
$\mathrm{Rb}-\mathrm{S} 3^{\text {v }}$	$3.4898(17)$	$\mathrm{P}-\mathrm{S} 2$	$2.038(2)$
$\mathrm{Rb}-\mathrm{S} 4^{\text {iii }}$	$3.7887(14)$	$\mathrm{P}-\mathrm{S} 3^{\text {viii }}$	$2.0381(19)$
$\mathrm{Pb}-\mathrm{S} 4$	$2.9204(14)$	$\mathrm{P}-\mathrm{S} 1$	$2.0644(19)$
$\mathrm{Pb}-\mathrm{S} 1^{\text {vi }}$	$2.9290(14)$		
$\mathrm{S} 4^{\text {iv }}-\mathrm{P}-\mathrm{S} 2$	$111.36(9)$	$\mathrm{S} 4^{\text {iv }}-\mathrm{P}-\mathrm{S} 1$	$111.30(8)$
$\mathrm{S} 4^{\text {viv }}-\mathrm{P}-\mathrm{S} 3^{\text {viii }}$	$109.75(8)$	$\mathrm{S} 2-\mathrm{P}-\mathrm{S} 1$	$106.65(8)$
$\mathrm{S} 2-\mathrm{P}-\mathrm{S} 3^{\text {vii }}$	$108.05(8)$	$\mathrm{S} 3^{\text {viii }}-\mathrm{P}-\mathrm{S} 1$	$109.62(8)$

Symmetry codes: (i) $\frac{1}{2}-x,-y, z-\frac{1}{2}$; (ii) $x, y-1, z$; (iii) $x-\frac{1}{2}, \frac{1}{2}-y,-z$; (iv) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (v) $x-1, y, z$; (vi) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (vii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (viii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.

The value of the Flack (1983) parameter suggests an enantiomeric twin. Examination of the resultant atomic coordinates with the program ADDSYM in the PLATON suite of programs (Spek, 2003) did not reveal additional symmetry. The structure was thus refined as a twin. The resultant twin ratio is 0.550 (7):0.450 (7). The displacement ellipsoids are reasonable (Fig. 3). The highest residual electron density is $0.06 \AA$ from the Pb site. The deepest hole is $0.75 \AA$ from this same site.

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

inorganic papers

References

Aitken, J. A., Larson, P., Mahanti, S. D. \& Kanatzidis, M. G. (2001). Chem. Mater. 13, 4714-4721.
Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Bucher, C. K. \& Hwu, S.-J. (1994). Inorg. Chem. 33, 5831-5835.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lee, S. \& Hilt, R. J. (1992). J. Alloys Compd. 189, 269-271.
Sheldrick, G. M. (2003). SHELXTL for DOS/Windows/NT. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sunshine, S. A., Kang, D. \& Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 62026204.

Yao, J., Deng, B., Ellis, D. E. \& Ibers, J. A. (2002). Inorg. Chem. 41, 7094-7099.

