inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jiyong Yao and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (S–P) = 0.002 Å R factor = 0.020 wR factor = 0.049 Data-to-parameter ratio = 27.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

RbPbPS₄

Rubidium lead phosphorus tetrasulfide, RbPbPS₄, possesses the CsSmGeS₄ structure type, crystallizing in space group $P2_12_12_1$ of the orthorhombic system. The structure consists of two-dimensional [PbPS₄] layers built from PbS₇ monocapped trigonal prisms and PS₄ tetrahedra. The layers are separated by Rb atoms. Received 8 July 2004 Accepted 28 July 2004 Online 7 August 2004

Comment

In an effort to expand the range of $ABiMS_4$ (A = Rb and Cs, and M = Si and Ge; Yao *et al.*, 2002) compounds by substitution chemistry, the new compound RbPbPS₄ was obtained by the simultaneous substitution of Pb²⁺ for Bi³⁺ and P⁵⁺ for M^{4+} . The compound crystallizes in the non-centrosymmetric space group $P2_12_12_1$ and is isostructural with CsSmGeS₄ (Bucher & Hwu, 1994), which was refined with a different cell setting. The two unit cells become similar by cyclic permutation of the axes of the latter [$a_{old} = b_{new}$; $b_{old} = c_{new}$; $c_{old} = a_{new}$].

The structure of RbPbPS₄ (Fig. 1) consists of two-dimensional [PbPS₄] layers separated by Rb atoms. Each Rb atom is coordinated by a distorted bicapped trigonal prism of eight S atoms. The Rb–S bond lengths range from 3.368 (2) to 3.789 (1) Å, comparable with those of 3.323 (1)–3.577 (1) Å in RbBiSiS₄ (Yao *et al.*, 2002). Each P atom is coordinated by a tetrahedron of four S atoms. The P–S bond lengths range from 2.032 (2) to 2.064 (2) Å, consistent with those of 2.004 (2)–2.056 (2) Å in ScPS₄ (Lee & Hilt, 1992). Each Pb atom is coordinated by a monocapped trigonal prism of seven S atoms. The Pb–S distances range from 2.920 (1) to 3.282 (2) Å, comparable with those of 3.066 (3)–3.188 (3) Å in Li₂PbGeS₄ (Aitken *et al.*, 2001). The largest difference in Pb–S bond lengths within the PbS₇ polyhedron is 0.362 (2) Å.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of the two-dimensional [PbPS₄] layer in RbPbPS₄.

structure of the two-dimensional [PbPS₄] layer is shown in Fig. 2. The neighboring PbS₇ polyhedra share opposite edges of the rectangular planes of the prisms to form zigzag chains along the *b* direction. Two parallel polyhedral chains are connected by the sharing of opposite edges of the PS₄ tetrahedra. Each PS₄ tetrahedron is arranged in such a way that one of the S atoms becomes the cap of an adjacent PbS₇ polyhedron. The two [PbPS₄] slabs in the unit cell of RbPbPS₄ are related by a 2₁ screw axis along *a*.

Experimental

Figure 2

Yellow plates of RbPbPS₄ were obtained from a solid-state reaction of Rb₂S₃ (0.5 mmol), Pb (Alfa, 99.5%, 1.0 mmol), P₂S₅ (Aldrich, 99.5%, 0.5 mmol), and S (Aldrich, 99.5%, 1.0 mmol). The reactive flux Rb₂S₃ (Sunshine *et al.*, 1987) was prepared by the stoichiometric reaction of Rb (Aldrich, 98+%) and S in liquid NH₃. The reactants were loaded into a fused-silica tube under an Ar atmosphere in a glove box. The tube was sealed under a 10^{-4} Torr atmosphere (1 Torr = 133.322 Pa) and then placed in a computer-controlled furnace. The sample was heated to 1073 K over a period of 20 h, kept at 1073 K for 84 h, cooled at 6 K h⁻¹ to 373 K and then cooled rapidly to room temperature.

Crystal data

RbPbPS ₄	Mo $K\alpha$ radiation
$M_r = 451.87$	Cell parameters from 7200
Orthorhombic, $P2_12_12_1$	reflections
a = 6.3987 (7) Å	$\theta = 2.4 - 28.8^{\circ}$
b = 6.6899(7) Å	$\mu = 30.54 \text{ mm}^{-1}$
c = 17.2975 (19) Å	T = 153 (2) K
$V = 740.45 (14) \text{ Å}^3$	Plate, yellow
Z = 4	$0.18 \times 0.16 \times 0.016 \ \mathrm{mm}$
$D_x = 4.053 \text{ Mg m}^{-3}$	
Data collection	
Bruker SMART 1000 CCD	1807 independent reflections
diffractometer	1759 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.032$
Absorption correction: numerical	$\theta_{\rm max} = 28.8^{\circ}$
face indexed (SHELXTL;	$h = -8 \rightarrow 8$
Sheldrick, 2003)	$k = -9 \rightarrow 9$
$T_{\min} = 0.047, \ T_{\max} = 0.603$	$l = -23 \rightarrow 23$

Figure 3

The asymmetric unit of RbPbPS₄, showing displacement ellipsoids at the 90% probability level.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.049$ S = 1.391807 reflections 65 parameters $w = 1/[\sigma^2(F_o^2) + (0.02P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $\begin{array}{l} (\Delta/\sigma)_{\rm max}=0.001\\ \Delta\rho_{\rm max}=2.11~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-1.57~{\rm e}~{\rm \AA}^{-3}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 704~{\rm Friedel~pairs}\\ {\rm Flack~parameter}=0.550~(7) \end{array}$

Table 1

Selected geometric parameters (Å, °).

Rb-S1	3.3680 (15)	Pb-S2	2.9945 (16)
Rb-S2 ⁱ	3.4075 (17)	Pb-S3	3.0430 (16)
Rb-S4 ⁱⁱ	3.4345 (16)	Pb-S1	3.0900 (14)
Rb-S4	3.4412 (16)	Pb-S3 ^{vii}	3.1116 (16)
Rb-S3 ⁱⁱⁱ	3.4639 (17)	Pb-S2 ^{vii}	3.2823 (16)
Rb-S2 ^{iv}	3.4734 (17)	P-S4 ^{iv}	2.0320 (18)
Rb-S3 ^v	3.4898 (17)	P-S2	2.038 (2)
Rb-S4 ⁱⁱⁱ	3.7887 (14)	P-S3 ^{viii}	2.0381 (19)
Pb-S4	2.9204 (14)	P-S1	2.0644 (19)
Pb-S1 ^{vi}	2.9290 (14)		
S4 ^{iv} -P-S2	111.36 (9)	S4 ^{iv} -P-S1	111.30 (8)
S4 ^{iv} -P-S3 ^{viii}	109.75 (8)	S2-P-S1	106.65 (8)
S2-P-S3 ^{viii}	108.05 (8)	S3 ^{viii} -P-S1	109.62 (8)

Symmetry codes: (i) $\frac{1}{2} - x, -y, z - \frac{1}{2}$; (ii) x, y - 1, z; (iii) $x - \frac{1}{2}, \frac{1}{2} - y, -z$; (iv) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (v) x - 1, y, z; (vi) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (vii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii)

The value of the Flack (1983) parameter suggests an enantiomeric twin. Examination of the resultant atomic coordinates with the program *ADDSYM* in the *PLATON* suite of programs (Spek, 2003) did not reveal additional symmetry. The structure was thus refined as a twin. The resultant twin ratio is 0.550 (7):0.450 (7). The displacement ellipsoids are reasonable (Fig. 3). The highest residual electron density is 0.06 Å from the Pb site. The deepest hole is 0.75 Å from this same site.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2003); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This research was supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

8784 measured reflections

References

- Aitken, J. A., Larson, P., Mahanti, S. D. & Kanatzidis, M. G. (2001). Chem. Mater. 13, 4714–4721.
- Bruker (2003). *SMART* (Version 5.054) and *SAINT-Plus* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bucher, C. K. & Hwu, S.-J. (1994). Inorg. Chem. 33, 5831-5835.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Lee, S. & Hilt, R. J. (1992). J. Alloys Compd. 189, 269-271.

- Sheldrick, G. M. (2003). SHELXTL for DOS/Windows/NT. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sunshine, S. A., Kang, D. & Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 6202–6204.
- Yao, J., Deng, B., Ellis, D. E. & Ibers, J. A. (2002). Inorg. Chem. 41, 7094-7099.